Atmospheric Monitoring Systems of the Auger Southern Observatory

John A.J. Matthews, University of New Mexico

Atmospheric Monitoring Systems of the Auger Southern Observatory

Astroparticles and Atmosphere Workshop Collège de France, Paris, France

John A.J. Matthews

New Mexico Center for Particle Physics
University of New Mexico
May 27, 2003

- 1. Why does Auger need Atmospheric Monitoring?
- 2. Atmospheric issues for Auger
- 3. Where is the grammage?
- 4. Wavelength acceptance of Fluorescence Detectors (FDs)
- 5. FD motivated atmospheric monitoring
- 6. Some (Auger) atmospheric monitoring issues
- 7. Are there broader interests?

1: Why does Auger need Atmospheric monitoring?

Schematic of air shower measurements

- Cosmic rays are *observed* as extensive air showers in the earth's atmosphere
- The atmosphere is:
 - 1. the showering medium: composition of primary cosmic rays is related to depth of shower maximum, X_{max}
 - 2. the readout system: ~ 50 ppm of shower energy is reemitted as N_2 fluorescence light providing a calorimetric measurement of the shower energy

2: Atmospheric issues for Auger

Detection method

- Surface Detector (SD): where is the *grammage*?
- Fluorescence detector (FD) (additionally):
 - 1. air fluorescence yield (efficiency VST and P)
 - 2. light transmission
 - 3. light multiple scattering correction
 - 4. scattered Cherenkov background into fluorescence signal
 - 5. atmospheric inhomogeneities: clouds, fog, smoke ...

3: Where is the grammage?

High precision weather stations monitor T and P at each Auger fluorescence site.

- Most of the air shower is within the troposphere
- Weather stations, plus the adiabatic and/or seasonal models, provide a 0th vertical profile of T and P and thus the relation between shower depth in gm/cm² and elevation in meters
- Radiosonde flights show significant variations ...

4: Wavelength acceptance of Fluorescence Detectors

Piece-by-piece estimate of Auger FD efficiency VS wavelength.

- \bullet Major N₂ fluorescence lines at 314/316nm, 337nm, 354/358nm, 376/381nm, 391nm, and 400/406nm
- Rayleigh scattering $(\Lambda(360nm) \approx 18.5 \text{km})$ weights spectrum to longer wavelength lines for distant showers
- Frequency tripled YAG (335nm) near middle of the FD wavelength acceptance

5: FD motivated atmospheric monitoring

Ordered by importance ...

- clouds:
 - 1. cloud monitors: (4) steerable IR cameras
 - 2. **shoot-the-shower:** (4) **steerable LIDARs** and IR cameras immediately after a "big" shower
- transmission corrections ... depend on total (light) scattering cross sections:
 - 1. aerosols: (4) steerable LIDARs, central laser facility (CLF) vertical laser, (3) horizontal attenuation length (HAM) monitors, star monitor
 - 2. molecular: (5?) weather stations, radiosonde balloons
 - 3. ozone: SUGGESTIONS?
- multiple scattering and air Cherenkov corrections ... depend on differential (light) scattering cross sections:
 - 1. Definitions: $\frac{d\sigma(z,\lambda)}{d\Omega} = \sigma \cdot \frac{1}{\sigma} \frac{d\sigma}{d\Omega} \propto \frac{1}{\Lambda} \cdot \frac{1}{\sigma} \frac{d\sigma}{d\Omega}$ where $\Lambda(z, 355 \text{nm})$ is the extinction length (from transmission corrections) and $\frac{1}{\sigma} \frac{d\sigma}{d\Omega}$ is the phase function
 - 2. aerosol phase function: (2) APF light sources
 - 3. molecular phase function: Rayleigh scattering

Specifications

- Raytheon 2000B OEM digital IR camera
- 320 x 240 pixels (0.15°) FOV = 46° x 35°
- spectral range 7-14 μm (matches cloud spectrum)
- 12 bit resolution
- maximum frame rate 30 Hz

Implementation

John Matthews AstroParticles & Atmosphere, Paris May 2003

6: Some (Auger) atmospheric monitoring issues ...

- "Ground" level measurements monitor (aerosol) wavelength dependence:
 - 1. HAM systems monitor Λ^a at 365nm, 405nm, 436nm and 542nm
 - 2. APF sources monitor aerosol $\frac{1}{\sigma} \frac{d\sigma}{d\Omega}$ at ~ 330 nm, 360nm and 390nm

but how do we extrapolate to heights above "ground" level?

- Large number of atmospheric monitoring experiments:
 - 1. Can all of the hardware be maintained (and kept calibrated)?
 - 2. Can all of the cross checks be implemented and then maintained?
 - 3. Should some measurements be done differently?

Proposed Layout of Completed HAM System 3 Lamp / Receiver Systems.

Los Leones to Coiheco (HAM 1 prototype) 44.5 km

Coihueco to Los Morados (HAM 2) 57.4 km

Coihueco to Norte

(HAM 3)

45 km

General Equipment Configuration for Receiver and Lamp.

UV Att Lengths (2001-2002 HAM Data)

Tot. Att Length 365 nm

7: Are there broader interests?

- To what extent are the Auger atmospheric data of interest to a broader community?
 - 1. The Auger monitoring covers an area of perhaps $75 \mathrm{km} \times 75 \mathrm{km}$
 - 2. Communications infra-structure would allow for additional atmospheric monitoring ...
 - 3. Some restrictions exist on (laser) wavelengths and intensities ...