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1. Background ... highest energy cosmic rays
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Schematic of extensive air shower cascade

e Energy scale: - 10%° eV =~ 16 Joules ... well above
future collider energies.

1. cosmic rays are observed via the extensive air shower
produced when they reach the earth’s atmosphere

2. 16Joules/~ 16usec (typical shower time) &~ 1 MW !
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1. Background (con’t) ...

Schematic of air shower measurements

e Measurement of 102°eV air showers:

1. km’s wide at ground level ... sparse sampling OK!

2. Composition of primary cosmic rays from depth of
shower maximum, X4, and/or from u/e ratio.

3. ~ 50ppm of shower energy is re-emitted as nitrogen
fluorescence light (290 ~ 440nm) ... thus a 1-MW
shower appears as a 50W relativistic light bulb!
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1. Background (con’t) ...
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Cosmic ray energy spectrum

e Rate: - low (~ 1/km?/century) ... so need large ex-
periments ... about the area of Rhode Island! Fluo-
rescence based experiments need dry (desert) air with

good visibility:.
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1. Background (con’t) ...
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Cosmic ray flux scaled by E*

e Structure in a power law spectrum:

1. knee at ~ 4 x 10V
2. second knee at ~ 4 x 1017V
3. ankle ~ 4 x 108V

4. cutoff at ~ 10*°eV ... or not ... therefore abso-
lute energy scale is critical!
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1. Background (con’t) ...

Detection method

Fly's Evwa with
activated phototubas

T

U

L ]

ya

Caranhow tan ks

Pierre Auger hybrid detection ...

1. Hybrid detection: simultaneous measurement of the air
shower by a ground array and by fluorescence telescopes

2. Hybrid events cross-check and cross-calibrate the two
types of detectors and provide the best composition
measurement

3. Ground array (only) events provide most statistics (¢.e.
highest energy events)
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1. Background (con’t) ...

Typical Pierre Auger ground array detector ...
10m?, 1.2m deep, water cherenkov detector

Solar powered, radio communication to central trigger

1. > 30 of 1600 ground array detectors installed and run-
ning + 2 prototype fluorescence telescopes (engineering
array test from Nov. 2001 ~ Mar. 2002)

2. ~ 100 ground array detectors and 12 of 24 fluorescence
telescopes scheduled to be operational by summer 2003
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1. Background (con’t) ...

Los Leones fluorescence detector building

e Auger experiment ... ground array is overlooked
by 4 6-telescope fluorescence detectors

e Fluorescence detectors:

1. Image the shower (longitudinal) development,

2. Provide a calorimetric measurement of the shower
energy.

3. The validity of the shower energy relies on
the absolute calibration of the fluorescence
telescopes.
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2. Fluorescence detector calibration ... overview

Schematic of the Auger fluorescence telescopes.

e The fluorescence light from the extensive air shower will
be captured by the fluorescence telescopes, focused on
cameras subdivided into 440 pixels, and digitized.

e The telescope calibration provides the con-
version between digitized signal, in ADC
units, and photons incident on the 3.80m?
telescope aperture.

e The calibration effictency, for the ith—pixel in the jth—
telescope, is denoted: eapc(A)i; (ADC/photon).



John A.J. Matthews, Optical Calibration of the Auger Fluorescence Telescopes 10

2. FD calibration overview (con’t) ...

Auger fluorescence telescope.

Aperture and camera of prototype

e 2.2m diameter telescopes are a simple Schmidt system.

e UV filters, in the entrance aperture, provide a window
and exclude light with wavelengths > 420nm.

e Schmidt corrector elements cover radii of 0.85m < r <
1.1m.
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2. FD calibration overview (con’t) ...

Mirror and camera of prototype fluorescence telescope.

e Light is focused by a large 3.9m x 3.9m spherical mirror
(needed to accommodate the 30° x 30° field of view).

e The camera contains 440 PMT's on a spherical surface.

e Cracks between PMTs are covered by reflective trian-
gular inserts termed Mercedes.

e The calibration must incorporate all the de-
tails!
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2. FD calibration overview (con’t) ...
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Schematic of the Auger fluorescence telescopes.

e The combined efficiency for all of the components must

be known and changes in the efficiencies with time must
be tracked.

e This calibration task has been broken down
into two separate sub-tasks:

— absolute calibrations which are infrequent, and

— relative calibrations which are frequent.



John A.J. Matthews, Optical Calibration of the Auger Fluorescence Telescopes 13

2. FD calibration overview (con’t) ...

e The relative calibrations are to monitor time depen-
dent changes between absolute calibrations.

e The absolute calibrations are done in three separate
ways:
— piece-by-piece estimate,
— Rayleigh scattering from 355nm pulsed laser
beam(s),

— flat-field drum illuminator(s) with 375+12nm LED
pulsed source.

e The Rayleigh and drum illuminator calibrations pro-
vide an absolute, end-to-end calibration of the fluores-
cence telescopes.

— By absolute we mean that the flux of photons
on the telescope aperture is independently mea-
sured and known to an absolute precision: nominally

~ 5%.

— By end-to-end we mean that the calibration pro-
cedure includes all efficiencies and geometrical ef-
fects. The end-to-end calibration proce-
dure measures the ADC /photon efficiency,
€ADC(Asource)i j» at wavelength A in one
step.
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3. Absolute optical calibration

Fluorescence Detector Efficiency VS Wavelength
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Piece-by-piece calibration: epg(\) (PE/photon).
Note: the Schmaidt-corrector contribution includes the combined effect

of the corrector ring and the camera shadow.

e Transmission and reflection efficiencies are measured for each tele-
scope component.

e These are combined in a ray-tracing program to estimate the
PE/photon efficiency, epg()); ;.

e The ADC/photon efficiency is given by:
€eapc(N)i;j = €pp(N)ij - ¢i; where g;; is the electronics gain
(ADC/PE) ... typical values were ~ 1.8 ADC/PE.

e The (current) piece-by-piece calibration uncertainty was
estimated at ~ 20%.
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3. Absolute optical calibration (con’t)
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Rayleigh calibration:
Mie : Rayleigh fraction was minimized by viewing the scattered light
at scattering angles, 92° < 6 < 122°, ... and A% > 40km.

e A 355nm laser was positioned a few kilometers from the fluores-
cence telescope to be calibrated.

e The laser was directed near-vertical and the pulse to pulse intensity
monitored to a precision of ~ 5%.

e Light was scattered from the beam by Rayleigh scattering (on the
molecular atmosphere) and by Mie scattering (on aerosols).

e The scattered light was then used to calibrate the telescope(s).

e Absolute calibration values obtained for telescope-4
were: 5.1 photons/ADC and 4.9 photons/ADC with
estimated uncertainty ~ 10%.
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3. Absolute optical calibration (con’t)
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Drum illuminator calibration:
Schematic of drum illuminator positioned at the entrance aperture of
one of the Auger fluorescence telescopes.

e In the drum illuminator calibration a drum-shaped, diffused,
pulsed, light-source was positioned at the entrance aperture of the
telescope under calibration.

e The drum illuminator provided rather uniform illumination over
the entrance aperture of the telescope.

e A calibrated PMT measured the absolute light flux (from the
drum) to a precision of ~ 5% before each telescope calibration.

e The preliminary analysis for telescope-4 measured an
average calibration of 4.0 photons/ADC with esti-
mated uncertainty of ~ 7%.
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4. Relative optical calibration

Schematic of Auger fluorescence telescopes showing
relative calibration diffusers.

e The relative optical calibration system was
used to monitor time variations in the tele-
scope calibration between absolute calibra-
tions.

e This was done with three xenon flash lamp light sources
coupled to optical fibers to distribute light signals to
three different destinations (denoted A, B and C) on

each telescope.
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4. Relative optical calibration (con’t)

Photograph of one of the three optical calibration light

sources at each fluorescence detector site.

e Flach calibration light source included a xenon flash
lamp at the focus of a f/1.5 lens, quartz beam split-
ter (to a monitoring fiber), filter wheel and /2.4 lens
focusing onto a 1:7 optical fiber splitter.

e (Quartz optics were used through-out.

e The optical calibration light sources mount on a 18" %
30” optical bread-board which are in-turn supported on
simple wall-mounted shelves.



John A.J. Matthews, Optical Calibration of the Auger Fluorescence Telescopes 19

4. Relative optical calibration (con’t)

Profile of Calibration Signals versus Time
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Sequential FADC bin

Typical light pulses from the “A”-source.
Each time bin is 100nsec. The arrows show different integration times

used to monitor the observed signal.

e The A-source included a Johnson-U filter that approx-
imated the wavelength acceptance of the fluorescence
telescopes and a filter wheel with 5 different neutral
density filters that provided a dynamic range of ~ 100.
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4. Relative optical calibration (con’t)

MNormalized Calib1 source intensity: Output path
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Optical calibration sources’ intensity during the last year.
The plot shows the light pulse intensities (average + RMS) wversus
sequential day since January 1, 2001. The intensities are normalized

to the average intensity for the entire time period.

e The xenon light pulses were very stable with an
RMS /average-pulse-intensity of ~ 0.5% for typical 50-
pulse calibrations.

e Over many months of operation the xenon
calibration pulses varied by ~ 1%.
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4. Relative optical calibration (con’t)

Mormalized FMT Fulse Size vs Event

T T
"norm_pmt_mo05S.out”

115

=
.

SR DR &
[41)
= 105 | + ; § 5
= + g 4 +
= .
= 1+
& +
= + + +
= ¥
§ 095 ¥ | #
% * + + T +
E 0.9 - Mow . Jan. Feb. Mar .
=
& pesf

’ 2001 2002

0.8 |-

0?5 1 1 1 1 1 1 1

0 50 100 150 200 250 300 as0 400

Run number

Time history of the normalized A-source calibration signals.
All 440 pixels (PMTs) of telescope-5 are shown.
The vertical axis records each pixel’s observed signal normalized by the
average of that pixel’s signal during the 5-month period. The horizontal

axis is the sequential calibration run number.

e The vertical smear for each calibration run shows that the gains
of individual pixels changed in time in comparison to the average
(coherent) pixel trends.

e The vertical motion of the centroid of each smear shows that there
were some coherent time variations of the pixel gains.

e The relative pixel to pixel variations with time, and
the coherent variations with time, were typically < 5%.
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4. Relative optical calibration (con’t)

gainl ¥3, gain2

Normalized relative pixel gains from A-source calibrations:
(vertical axis) corrected signal technique versus (horizon-
tal axis) variance/mean-intensity technique.

e A semi-empirical model corrected for position depen-
dences of the light intensity at each pixel. The cor-
rected signal in each pixel was then a direct measure of
the pixel gain.

e The signal variance was used to estimate the gain,
ADC/PE, in the i* pixel of the ;™ telescope:
g o 2
Yij =~  ADC, 141 1]
variance and ADC'; ; was the pixel signal mean.

where o7 . was the pixel signal
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5. Summary

Fluorescence Detector Efficiency VS Wavelength
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Comparison of the piece-by-piece (solid-box points), Rayleigh (“red”-
point) and drum illuminator (“green”-point) calibration results. The
(preliminary) gain ¢ = 1.8 £ 10% ADC/PE was used to plot the

Rayleigh and drum illuminator absolute calibration results on this

figure.

e Auger engineering array test provided an opportunity to
evaluate the proposed fluorescence detector calibra-
tion procedures, associated hardware and software.

e The three calibration procedures gave commensurate results at

320 340 360 380 400 420
Wavelength (nm)

about the 20% level.

e Work is ongoing to improve each of the procedures and we expect

consistency with better accuracy in the future.
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