Optical Calibration of the Auger Fluorescence Telescopes

SPIE Conference 4858: Particle Physics Instrumentation

Waikoloa, Hawaii

John A.J. Matthews

New Mexico Center for Particle Physics
University of New Mexico
August 22, 2002

- 1. Background ... highest energy cosmic rays
- 2. Fluorescence telescope calibration ... overview
- 3. Absolute optical calibration
 - Piece-by-piece calibration
 - Rayleigh calibration
 - Drum illuminator calibration
- 4. Relative optical calibration
- 5. Summary

1. Background ... highest energy cosmic rays

Schematic of extensive air shower cascade

- Energy scale: -10^{20} eV ≈ 16 Joules ... <u>well</u> above future collider energies.
 - 1. cosmic rays are *observed* via the extensive air shower produced when they reach the earth's atmosphere
 - 2. 16 Joules / $\sim 16 \mu \text{sec}$ (typical shower time) $\approx 1 \text{ MW}$!

Schematic of air shower measurements

• Measurement of 10^{20} eV air showers:

- 1. km's wide at ground level ... sparse sampling OK!
- 2. Composition of *primary* cosmic rays from depth of shower maximum, X_{max} , and/or from μ/e ratio.
- 3. ~ 50 ppm of shower energy is re-emitted as nitrogen fluorescence light (290 ~ 440 nm) ... thus a 1-MW shower appears as a 50W relativistic light bulb!

Ö

Cosmic ray energy spectrum

• Rate: - low ($\sim 1/\mathrm{km^2/century}$) ... so need <u>large</u> experiments ... about the area of Rhode Island! Fluorescence based experiments need dry (desert) air with good visibility.

Cosmic ray flux scaled by E^3

• Structure in a power law spectrum:

- 1. knee at $\sim 4 \times 10^{15} \text{eV}$
- 2. second *knee* at $\sim 4 \times 10^{17} \text{eV}$
- 3. $ankle \sim 4 \times 10^{18} eV$
- 4. cutoff at $\sim 10^{20} eV$... or not ... therefore absolute energy scale is critical!

Detection method

Pierre Auger hybrid detection ...

- 1. Hybrid detection: simultaneous measurement of the air shower by a ground array and by fluorescence telescopes
- 2. Hybrid events cross-check and cross-calibrate the two types of detectors and provide the best *composition* measurement
- 3. Ground array (only) events provide most statistics (*i.e.* highest energy events)

Typical Pierre Auger ground array detector ...

10m², 1.2m deep, water cherenkov detector Solar powered, radio communication to central trigger

- 1. > 30 of 1600 ground array detectors installed and running + 2 prototype fluorescence telescopes (engineering array test from Nov. 2001 \sim Mar. 2002)
- $2. \sim 100$ ground array detectors and 12 of 24 fluorescence telescopes scheduled to be operational by summer 2003

Los Leones fluorescence detector building

- Auger experiment ... ground array is overlooked by 4 6-telescope fluorescence detectors
- Fluorescence detectors:
 - 1. Image the shower (longitudinal) development,
 - 2. Provide a calorimetric measurement of the shower energy.
 - 3. The validity of the shower energy relies on the absolute calibration of the fluorescence telescopes.

2. Fluorescence detector calibration ... overview

Schematic of the Auger fluorescence telescopes.

- The fluorescence light from the extensive air shower will be captured by the fluorescence telescopes, focused on cameras subdivided into 440 pixels, and digitized.
- The telescope calibration provides the conversion between digitized signal, in ADC units, and photons incident on the 3.80m² telescope aperture.
- The calibration efficiency, for the i^{th} -pixel in the j^{th} -telescope, is denoted: $\epsilon_{ADC}(\lambda)_{i,j}$ (ADC/photon).

Auger fluorescence telescope. Aperture and camera of prototype

- 2.2m diameter telescopes are a simple Schmidt system.
- UV filters, in the entrance aperture, provide a window and exclude light with wavelengths > 420nm.
- Schmidt corrector elements cover radii of 0.85m < r < 1.1m.

Mirror and camera of prototype fluorescence telescope.

- Light is focused by a large $3.9 \text{m} \times 3.9 \text{m}$ spherical mirror (needed to accommodate the $30^{\circ} \times 30^{\circ}$ field of view).
- The camera contains 440 PMTs on a spherical surface.
- Cracks between PMTs are covered by reflective triangular inserts termed *Mercedes*.
- The calibration must incorporate all the details!

Schematic of the Auger fluorescence telescopes.

- The combined efficiency for all of the components must be known and changes in the efficiencies with time must be tracked.
- This calibration task has been broken down into two separate sub-tasks:
 - absolute calibrations which are infrequent, and
 - **relative** calibrations which are frequent.

- The **relative** calibrations are to monitor time dependent changes between absolute calibrations.
- The **absolute** calibrations are done in three separate ways:
 - piece-by-piece estimate,
 - -Rayleigh scattering from 355nm pulsed laser beam(s),
 - flat-field $drum\ illuminator(s)$ with 375 ± 12 nm LED pulsed source.
- The *Rayleigh* and *drum illuminator* calibrations provide an absolute, end-to-end calibration of the fluorescence telescopes.
 - By **absolute** we mean that the flux of photons on the telescope aperture is independently measured and known to an absolute precision: nominally $\sim 5\%$.
 - By end-to-end we mean that the calibration procedure includes all efficiencies and geometrical effects. The end-to-end calibration procedure measures the ADC/photon efficiency, $\epsilon_{ADC}(\lambda_{source})_{i,j}$, at wavelength λ_{source} in one step.

3. Absolute optical calibration

Piece-by-piece calibration: $\epsilon_{PE}(\lambda)$ (PE/photon).

Note: the *Schmidt-corrector* contribution includes the combined effect of the corrector ring and the camera shadow.

- Transmission and reflection efficiencies are measured for each telescope component.
- These are combined in a ray-tracing program to estimate the PE/photon efficiency, $\epsilon_{PE}(\lambda)_{i,j}$.
- The ADC/photon efficiency is given by: $\epsilon_{ADC}(\lambda)_{i,j} = \epsilon_{PE}(\lambda)_{i,j} \cdot g_{i,j}$ where $g_{i,j}$ is the electronics gain (ADC/PE) ... typical values were ~ 1.8 ADC/PE.
- The (current) piece-by-piece calibration uncertainty was estimated at $\sim 20\%$.

3. Absolute optical calibration (con't)

Rayleigh calibration:

Mie : Rayleigh fraction was minimized by viewing the scattered light at scattering angles, $92^{\circ} < \theta < 122^{\circ}$, ... and $\Lambda^{aerosol} > 40$ km.

- A 355nm laser was positioned a few kilometers from the fluorescence telescope to be calibrated.
- The laser was directed near-vertical and the pulse to pulse intensity monitored to a precision of $\sim 5\%$.
- Light was scattered from the beam by Rayleigh scattering (on the molecular atmosphere) and by Mie scattering (on aerosols).
- The scattered light was then used to calibrate the telescope(s).
- Absolute calibration values obtained for telescope-4 were: 5.1 photons/ADC and 4.9 photons/ADC with estimated uncertainty $\sim 10\%$.

3. Absolute optical calibration (con't)

Drum illuminator calibration:

Schematic of $drum\ illuminator$ positioned at the entrance aperture of one of the Auger fluorescence telescopes.

- In the *drum illuminator* calibration a drum-shaped, diffused, pulsed, light-source was positioned at the entrance aperture of the telescope under calibration.
- The *drum illuminator* provided rather uniform illumination over the entrance aperture of the telescope.
- A calibrated PMT measured the absolute light flux (from the drum) to a precision of $\sim 5\%$ before each telescope calibration.
- The preliminary analysis for telescope-4 measured an average calibration of 4.0 photons/ADC with estimated uncertainty of $\sim 7\%$.

4. Relative optical calibration

Schematic of Auger fluorescence telescopes showing relative calibration diffusers.

- The relative optical calibration system was used to monitor time variations in the telescope calibration between absolute calibrations.
- This was done with three xenon flash lamp light sources coupled to optical fibers to distribute light signals to three different destinations (denoted A, B and C) on each telescope.

Photograph of one of the three optical calibration light sources at each fluorescence detector site.

- Each calibration light source included a xenon flash lamp at the focus of a f/1.5 lens, quartz beam splitter (to a monitoring fiber), filter wheel and f/2.4 lens focusing onto a 1:7 optical fiber splitter.
- Quartz optics were used through-out.
- \bullet The optical calibration light sources mount on a 18" \times 30" optical bread-board which are in-turn supported on simple wall-mounted shelves.

Typical light pulses from the "A"-source.

Each time bin is 100nsec. The *arrows* show different integration times used to monitor the observed signal.

• The A-source included a Johnson-U filter that approximated the wavelength acceptance of the fluorescence telescopes and a filter wheel with 5 different neutral density filters that provided a dynamic range of ~ 100 .

Optical calibration sources' intensity during the last year.

The plot shows the light pulse intensities (average \pm RMS) versus sequential day since January 1, 2001. The intensities are normalized to the average intensity for the entire time period.

- The xenon light pulses were very stable with an RMS/average-pulse-intensity of $\sim 0.5\%$ for typical 50-pulse calibrations.
- Over many months of operation the xenon calibration pulses varied by $\sim 1\%$.

Time history of the *normalized* A-source calibration signals. All 440 pixels (PMTs) of telescope-5 are shown.

The vertical axis records each pixel's observed signal normalized by the average of that pixel's signal during the 5-month period. The horizontal axis is the sequential calibration run number.

- The vertical *smear* for each calibration run shows that the gains of individual pixels changed in time in comparison to the average (coherent) pixel trends.
- The vertical motion of the centroid of each *smear* shows that there were some coherent time variations of the pixel gains.
- The relative pixel to pixel variations with time, and the coherent variations with time, were typically < 5%.

Normalized relative pixel gains from A-source calibrations: (vertical axis) corrected signal technique versus (horizontal axis) variance/mean-intensity technique.

- A semi-empirical model corrected for position dependences of the light intensity at each pixel. The corrected signal in each pixel was then a direct measure of the pixel gain.
- The signal variance was used to estimate the gain, ADC/PE, in the i^{th} pixel of the j^{th} telescope: $g_{i,j} \approx \frac{\sigma_{i,j}^2}{\overline{ADC}_{i,j} \cdot 1.41}$ where $\sigma_{i,j}^2$ was the pixel signal variance and $\overline{ADC}_{i,j}$ was the pixel signal mean.

5. Summary

Comparison of the *piece-by-piece* (solid-box points), Rayleigh ("red"-point) and $drum\ illuminator$ ("green"-point) calibration results. The (preliminary) gain $g=1.8\pm10\%$ ADC/PE was used to plot the Rayleigh and $drum\ illuminator$ absolute calibration results on this figure.

- Auger *engineering array* test provided an opportunity to evaluate the proposed fluorescence detector calibration procedures, associated hardware and software.
- The three calibration procedures gave commensurate results at about the 20% level.
- Work is ongoing to improve each of the procedures and we expect consistency with better accuracy in the future.