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(I) A new Parametrization of CR Shower Profiles

• Recall that CR air showers, detected via the air
fluorescence technique, are reconstructed using functions
that parametrize the longitudinal profile of each shower.

• The Auger reconstruction uses the Gaisser-Hillas
4-parameter form.

• The HiRes group has used both the Gaisser-Hillas form and
a 3-parameter Gaussian-in-Age form.

• Historically analytic shower theory suggested yet other
forms; the best known is a 3-parameter form popularized by
Greisen.

• Is there an optimal form? How different are the familiar
forms?

• Let this percolate for about 8 years ..

.
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HiRes-Prototype (2001) Study of Shower Profiles

• Left plot: Residuals from comparison of
HiRes-Prototype composite shower profile to
GIA, Greisen and GH parametrizations.
Events have 1017 ≤ E ≤ 1018eV.

• Top plot: Observed correlation between GH
parameters: T0 = X0

λ
and Tm = Xmax

λ
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HiRes (2001) Corsika Study of Shower Profiles
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Study Conex Showers: profile fwhm
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• Conclusion: GH and GIA functions described Corsika showers comparably well

• However GIA was preferable as it required only 3 parameters

• The Monte Carlo study observed the near equality of the width at half-maximum,
fwhm, of proton, iron and photon showers but did not exploit this fact
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A New Approach to Shower Profiles (I)

• How different are the different: GH, GIA and Greisen profiles?

• Are 3-parameters indeed sufficient or are 4-parameters needed?

• Can we profit from similarity of shower fwhm?

1. reformulate GH, GIA and Greisen profiles based on: Nmax, Xmax,
fwhm ≡ L + R and shower asymmetry f ≡ L/(L + R).

2. then all profiles depend on two dimensionless ratios: ǫ ≡ ∆
W

where

∆ = X − Xmax, W ≡ Xmax − X0 = fwhm
R(f)

, and ξ ≡ W
λ

, σ or W
p36.7

where ξ depends only on the asymmetry f .
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A New Approach to Shower Profiles (Ia)

• Gaisser-Hillas:

N(X)GH = Nmax (
X − X0

Xmax − X0
)

Xmax−X0
λ e−

X−Xmax
λ

with parameters, Nmax, Xmax, X0 and λ. Note: X0 is not the actual start of the
shower!

• Gaussian-in-Age:

N(X)GIA = Nmax e−
1
2

( s−1
σ

)2

with (nominal) parameters, Nmax, Xmax (as s = 3X
X+Xmax

) and σ. Note: this
assumes the shower starts at X = 0.

• Greisen:

N(t)Greisen = Nmax e( t(1− 3
2

ln(s)) − tmax )

with (nominal) parameters, Nmax and tmax. Note: this assumes the shower starts
at t = 0 and it develops in radiation lengths.
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A New Approach to Shower Profiles (Ib)

• Gaisser-Hillas: We now replace X0 using: W ≡ Xmax −X0 and define distances
with respect to Xmax: ∆ = X − Xmax. Then the GH profile can be written as:

N(X; Nmax, Xmax, W, λ)GH = Nmax (1 +
∆

W
)

W
λ e−

∆
λ

This form emphasizes the role of a physical quantity, the distance from shower
maximum, ∆, in comparison to e.g. an unphysical quantity, X − X0. Furthermore
∆ is scaled by a parameter W potentially resolving a tension between Xmax and
X0 in a parameter optimization to fit experimental shower profiles.

• Gaussian-in-Age: We introduce X0 then replace it using: ǫ ≡ ∆
W

and

s(ǫ) = 1+ǫ
1+ǫ/3

:

N(X; Nmax, Xmax, W, σ)GIA = Nmax e
−2( ǫ

(3+ǫ)σ
)2

• Greisen: Similarly introducing t0, converting to gm/cm2 (t = X/p36.7) ... :

N(X; Nmax, Xmax, W, p36.7)Greisen = Nmax e
( ǫ(1− 3

2
ln(s(ǫ))) −

3
2

ln(s(ǫ)) ) W
p36.7

University of Utah, May 14, 2010 – p.7/53



A New Approach to Shower Profiles (II)
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f = 0.44
f = 0.45
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• Left plot: CONEX simulations suggest that the asymmetry parameter f may
provide some discrimination in primary composition

• Note: as the GIA “σ parameter” and the GH “(Xmax − X0)/λ ratio” depend only

on the asymmetry f , this echos the results of: V. Scherini et al (ICRC 2007) and S.
Andringa et al (ICRC 2009)

• Right plot: But the effect is subtle. The GH shower profiles have Xmax = 725

gm/cm2, fwhm = 525 gm/cm2 and three different values of asymmetry: f = 0.44,
0.45 and 0.46.
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What did we learn? (I)
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• Left plot: Shower profiles with the same fwhm and asymmetry f are almost
indistinguishable

• Right plot: The GH and Greisen profiles are systematically below the GIA profile for
shower depths well away from shower maximum. Thus shower calorimetric
energies evaluated using the GIA function are ∼ 1% larger than those evaluated
using GH or Greisen forms.
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What did we learn? (II)
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The f-dependent Terms of the Gaisser Hillas Shower Energy Integeral

• The GH calorimetric shower energy is to a good approximation:

Ecalor
shower = < dE/dx > Nmax fwhm (

ξ−(ξ+1) eξ Γ(ξ + 1)

R(f)
)

• Left plot: The asymmetry parameter f dependence, terms in ( ), is small

• Right plot: Thus Ecalor
shower ∝ Nmax fwhm; CONEX simulations are shown for

proton, iron and photon showers at 1018.5eV
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What did we learn? (III)
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• Shower (fwhm, f ) parameters are less correlated than conventional parameters

• But correlated doesn’t mean that 3 parameters are sufficient ...
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Composition and Exotics studies

Shower: X_max
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• Plot of shower asymmetry f VS Xmax for CONEX simulations of proton, iron, and
photon showers near 1018.5eV

• As conventional showers have tails mostly to larger values of shower asymmetry f ,
typically associated with showers with larger values of fwhm, exotic studies are
urged to search for showers with smaller values of shower asymmetry: i.e. more
asymmetric showers!
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Conclusions: Shower Profile based on fwhm,f

• For profiles with the same (fwhm, f ), the GH and Greisen shower profiles are
essentially identical and systemically less than GIA for shower depths away from
shower maximum.

• Of the three functions, GH is most convenient as the integral of the GH profile is an
analytic function.

• Monte Carlo simulated air showers using CONEX, and parametrized in terms of
the new parameters: (fwhm, f ), have correlations (between those parameters)
greatly reduced over the standard parametrizations e.g. Gaisser-Hillas parameters:
(X0, λ).

• This allows shower profile reconstructions to add constraints (if needed) on the
mostly uncorrelated parameters fwhm, f .

• While not a new result, the CONEX shower simulations suggest that the shower
asymmetry parameter, f , may have some sensitivity to the incident cosmic ray
particle type: e.g. p, C/N/O, Fe (but possibly not γs).

• For all the details see: LANL arXiv:0909.4014 ≡ J. Phys. G: Nucl. Part. Phys. 37
(2010) 025202.
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(II) Anisotropy searches: A. Watson (Auger Celebration, 2005)
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Motivation for cosmic ray anisotropy:

• For several reasons, the highest energy CRs e.g.

with energies above the ankle, Upper Figure, are
probably from extra-galactic, astrophysical
sources

• With a GZK cutoff, then the highest energy CRs

should come from relatively nearby sources ...

• For nearby (9 < R < 93 Mpc), astrophysical
sources, the universe is observed to be
non-isotropic: Lower Figure

• Thus, baring magnetic field and/or composition
surprises, we expect the arrival directions to show
structure: i.e. be anisotropic

• And what is the best way to search for anisotropy
signal(s): clusters of CRs, CR correlations with astrophysi-

cal catalogs, non-isotropy in CR arrival directions, ... consis-
tent with small (low statistics) data samples?
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Experimental examples: AGASA
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• If sources are bright we expect to see multiple cosmic rays/source

• AGASA reported 5 doublets and 1 triplet few-degree sized event-clusters

• With larger exposure, HiRes stereo data have not verified the AGASA result

• However if sources are faint: then searching for (cross-) correlations between
candidate sources and CRs may show a signal
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Experimental examples: AGASA, Yakutsk, HiRes

• Popular candidate astrophysical sources for UHECRs include active galactic nuclei
(AGNs) and gamma ray bursts (GRBs) ... but we do not know!

• While some correlations have been found, confirming their significance with low
statistics data was difficult.

• Higher statistics Auger data are inconsistent with the BL Lac:CR correlation!
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Experimental examples: Auger

• The most compelling observational evidence consistent with astrophysical
expectations of anisotropy is arguably the 27 events with energy > 57 EeV
observed by Auger.

• At a minimum, the Véron catalog: AGN maximum redshift and correlation angle,
defines a limited area (effectively 21%) of the sky. Thus the Véron catalog
AGN:CR correlation signal is evidence for a non-isotropic flux of CRs that is
enhanced near known extra-galactic objects.
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Catalog independent methods:

• Catalog dependent (cross-correlation) studies are not without issues: e.g. penalty
factors for scans over different catalogs, issues related to brightness limited catalogs,
and/or the need to restrict the data to match the limited sky coverage of individual
catalogs.

• However with limited statistics, catalog independent (auto-correlation) methods are
intrinsically less sensitive than (any given) catalog dependent study.

• Thus there is a need to identify and/or develop more effective (catalog
independent) methods.

• We have studied two catalog independent analysis, C.I.A., techniques:

1. a binned two-point (2-point) angular correlation method for all pairs of CR
events

2. a new, (binned), three point (3-point) method that uses a shape and strength
parameter for all triples of CR events.

• Our paper is available at: arXiv:0905.4488 ≡ J.Phys.G36 115203 (2009)
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A 2-point method:

• Two points on the sphere
define an angle.

• Use the set of angles between
all pairs of CRs.

• Compare the observed
distribution VS isotropic
expectation (for the same size,
Monte Carlo, data sample).

• Use a Pseudo-Likelihood test
statistic

• Thus our 2-point analysis is for
pedagogy: a “known” to be
easily compared with our 3-
point method, an “unknown”!
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A 2-point method ( toy example - I ):

• Toy CR Monte Carlo (60 event) data
set was generated with a
quadrupole distribution on the sky.

• Upper plot: The distribution of
angles between all pairs of CRs are
the red points with error bars; the
gray histogram is the isotropy
expectation.

• Lower plot: The probability for
observing nobs doublets in the ith bin
given that we expect nexp, is
approximated by a Poisson
distribution:
Pi(nobs|nexp) = n

nobs
exp · e−nexp/nobs!
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A 2-point method ( toy example - II ):

• We then compute a
pseudo-log-likelihood:

ΣP = ΣNbins

i=1 ln Pi(nobs|nexp)

for the toy CR data set.

• The distribution of
pseudo-log-likelihoods for a large
number of equivalent isotropic data
sets (typically 20,000) is also
plotted (hatched histogram).

• Quantitatively: the significance,
P , is the fraction of Monte Carlo
equivalent isotropic data sets to the
left of the red line.
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A 3-point method:

• Three points on the sphere
• Use the eigenvalues of

rotation matrix: τ1 ≥ τ2 ≥ τ3,
and τ1 + τ2 + τ3 = 1,
thus there are only two free
parameters

• Define the:
Shape: γ = log( log(τ1/τ2)

log(τ2/τ3)
)

as the shape increases from
−∞ to +∞ the triples are less
elongated.

Strength: ζ = log( τ1/τ3 )
as the strength increases the
CR events are more concen-
trated.
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A 3-point method ( toy example ):
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Catalog independent analyses (I)

• To study the sensitivity of our metrics, we used several mock anisotropic models.

• All studies required: P < Type I error α < 1% (or 0.1%), so anisotropy is
distinguishable from isotropy. For good detection efficiency the: Type II error
(determined via simulation) should be: β < 10%, i.e. the efficiency (power) is 1 − β.

• Studies were done varying: data set size and the fraction of anisotropic events.

• Four of the mock distribution are shown (in galactic coordinates) weighted by the
acceptance of the Auger Southern Observatory.
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Catalog independent analyses (II)
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Catalog independent analyses (III)

Signal/Total
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ffi

ci
en

cy

0

0.2

0.4

0.6

0.8

1

1.2

QUADRUPOLEx 40 events/sky

 = 0.01α
2pt

SS

 = 0.001α

2pt

SS

QUADRUPOLEx 40 events/sky

How do source detection efficiencies vary with source purity (i.e.
signal/total) and number of CR events?

40 events

University of Utah, May 14, 2010 – p.27/53



Catalog independent analyses (IV)
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Catalog independent analyses (V-a)

There is a tension between statistics and fraction of events from nearby: z ≤ 0.02 sources:

• catalog independent techniques profit from more events

• yet assuming CR protons, GZK models suggest that for a threshold energy as low
as 60 EeV the fraction of CRs from nearby sources is ∼ 50% ... which negatively
impacts detectability!
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Catalog independent analyses (V-b)
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Based on simulated samples (ie mock data) from hypothetical sources, we find:

• some source (distributions) can be identified (at the 1% or 0.1% confidence level)
with 60 events and some cannot!

• the sense is that many more than 60 events may be needed for a robust
identification of an anisotropic signal in the highest energy cosmic rays.
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C.I.A. application to Auger data (I)

• Top plot: Monte Carlo study of mock
data from astrophysically motivated
sources similar to Vernon catalog
AGNs. The plot shows the power of
three catalog independent analyses:
2pt, 2pt+ and 3pt as a function of the
number of CR events. The 2pt and
3pt are the methods presented
earlier.

• Solid lines are for α = 1%, dashed
lines are for α = 0.1%.

• Bottom plot: The equivalent plots as-
suming 50% isotropic background.
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C.I.A. application to Auger data (II)

Scan of Auger data: January 1, 2004 to March 31, 2009 starting with the 20 highest
energy events then in steps of 10 events to 100 events.

• The vertical axis is the probability, P , for the data to be a realization of an isotropic
source distribution. The minimum values are: P = 0.26% (2pt+) and P = 0.56%
(3pt) for Emin ≈ 52EeV (rather similar to our AGN:CR correlation result).

• NB: bins are correlated and no scan penalty correction has been made in reporting,
P .
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C.I.A. application to Auger data (III)

• Top plot: Plot of the natural-log of
the Poisson probability to observe
nobs shape-strength triples given
nexp assuming an isotropic
distribution (in shades of blue).

• Bottom plot: The distribution of
Pseudo-log-likelihoods for 20,000
(equivalent) isotropic data sets is
shown hatched. The red line is the
Pseudo-log-likelihood for the 70
events above 52 EeV. The signifi-
cance, P , is the fraction of Monte
Carlo (equivalent) isotropic data
sets to the left of the data.
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Anisotropy searches: Conclusions

• We have illustrated a new, 3-point (shape-strength), C.I.A.
method for detecting anisotropy in spherical data sets that is
powerful for small numbers of events.

• Studies were done with many mock signals: signal type,
number of events and signal dilution all dramatically effect
detectability.

• Number of events and signal dilution:
◦ If “lucky” then ∼ 60 events with >

∼
70% signal are detectable

◦ If not then many more events are needed
◦ Tantalizing first C.I.A. results from Auger Southern Observatory

• Experimentally:
◦ Many more events are likely needed for robust C.I.A. identification of

anisotropy, (i.e. not “lucky”) detection.
◦ Many more events + GZK-cutoff = very large detector
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(III) What evidence for a GZK-cutoff?
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If the highest energy cosmic rays are

non-isotropic, this is strong circumstantial

evidence for a GZK cutoff!

(top) AGASA spectrum

(bottom) HiRes spectrum Phys. Lett.
B619 271 (2005) and [astro-ph/0703099]:

• The ankle shows up clearly at
4.5 × 1018 eV (log10 E = 18.65).

• The spectrum steepens again at
5.6 × 1019 eV (log10 E = 19.75).

• The fall-off of the HiRes spectrum
above 1019.8 eV is evidence for
the GZK cutoff.

What does Auger observe? And does

Auger see a cutoff in the UHECR spectrum?
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Our Approach: Measuring Flux Suppression

(Left plot) The Auger Flux ×E3 (ICRC‘07).
The suppression is “obvious” but quan-
tification should be done carefully.

Our eyes like the binned-E3 flux plot but
their statistical estimators have some draw
backs.

J. (Doug) Hague has provided two statis-

tical estimators that are of general interest!

See: arXiv:0710.3600 and astro-ph/0610865 ≡

Astropart.Phys.27:455-464 (2007)

We choose the following:
• Un-binned estimators as they are less correlated, more precise and more accurate.

• The Tail-Power (TP) statistic (which is identically zero for a pure power-law) can
reject non- pure power-laws. It is (nearly) independent of the measured spectral
index γ and can discriminate tail suppression from tail enhancement.

• If a characteristic cutoff energy is desired, then a Likelihood Ratio Test has only a
weak dependence on γ.
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Hague Flux Suppression: The Hill plot

• For each Emin, we determine the
un-binned estimate of the pure power-law
spectral index γ (by maximizing the
likelihood: Top plot ).

• The systematic (energy) errors dominate
for low Emin but statistical errors
dominate at large Emin.

• The index increases as the energy
increases .

• There is suppression (i.e. the slope in-
creases)! But how do we determine the
significance?

University of Utah, May 14, 2010 – p.37/53



Hague Flux Suppression: The TP-statistic

• The TP-statistic (τ ) can discriminate
between flux suppression (increasing
slope with energy) and enhancement
(decreasing slope with energy):

τ̂(Emin) = ν̂2
1 (Emin) −

1

2
ν̂2(Emin)

where:

ν̂n(Emin) =
1

N>

X

Ei>Emin

lnn Ei

Emin

• It is (nearly) independent of γ.

• We can directly measure the significance in
standard deviations of the flux suppression
(Bottom plot )
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Hague Flux Suppression: Fitted Models (I)

• We study three models “f ” with parameters
“θ = {θ0, θ1, . . .}”:
◦ The pure power-law: θ = {Emin, γ}
◦ and two models with tail suppression:

1. the double power-law: θ = {Emin, γ, Eb, δ}
2. a Fermi-like power-law: θ = {Emin, γ, E1/2, wc}

• Parameters ( θ ) maximize the log-likelihood:

L(θ) =
∑N

i=1 ln f(Ei|θ)

• Systematic (CR event) energy uncertainties are
incorporated by shifting all event energies and then
re-maximize the likelihood.

• Statistical (CR event) energy errors and acceptance
information can be taken into account by the appropriate
convolution.
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Hague Flux Suppression: Fitted Models (II)

(Left plot) A log-log plot of the
number of (Auger) events
with energy greater than
Emin VS event minimum
energy (Emin).

The vertical axis is “one mi-

nus the (cumulative distribu-

tion function) CDF.”

We plot:

• each event energy (with its systematic errors shown in gray)

• the three models; pure power-law, double power-law and Fermi-like power-law

• the reported HiRes double power-law (normalized to the Auger flux).

Next: we must now quantify the flux suppression.
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Hague Flux Suppression: Likelihood Ratio

• We can use the likelihoods to discriminate models. The
Likelihood Ratio is:

R =
L(data | suppressed model hyp.)

L(data | pure power law hyp.)

• This test directly compares the best-fit suppressed model to
the best fit pure power-law.

• Since R2 ∼ χ2
1 we can estimate the (asymptotic) Probability of

False Acceptance:
PFA ≡ probability of accepting the suppressed model given that the data are drawn

from a pure power-law.

If the data are drawn from a power-law then the chance that
we would falsely accept either suppressed model is PFA.
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Hague Flux Suppression: Summary

Model Name Value Stat +Sys
−Sys

p-value Conclusion

Power-Law γ 2.78 0.02 −0.06
0.08

≥ 6σ (TP statistic) Rejected

Double PL

γ 2.68 0.02 −0.05
0.08

Eb 35 2 7
7

δ 4.22 0.22 −0.10
0.17

lg PFA = −4.12 Favored

Fermi PL

γ 2.63 0.02 −0.05
0.08

E1/2 56 5
4

13
13

wc 0.16 −0.03
0.02

−0.005
0.008

lg PFA = −4.29 Favored

• The preliminary result is that we can :

1. Reject the pure power-law model at a confidence level greater than six sigma.

2. Favor either suppressed model with confidence better than 1/10, 000.

3. Verify that the data are consistent with EGZK = 56 ± 5(stat)±15(sys) EeV ...
agrees with HiRes and with Berezinsky protons!

• This analysis alone cannot verify the GZK-cutoff, for that we need additional
information on: CR composition (e.g. all protons?) and CR astrophysics (e.g. sources

uniformly distributed? constant source injection spectrum?).
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Summary

• Auger has been a different experience ... and the (physical) challenge of a 55km ×

55km detector at a remote, largely undeveloped site cannot be overstated!

• Certainly one of the high-points of working on Auger was our collaboration with
the HiRes group!

• And at the craziest of times we have been able to have quite alot of fun developing
“novel analyses”!
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Additional/backup slides

Additional slides
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Which are best candidate sources?

• Popular astrophysical sources for UHECRs include active galactic nuclei (AGNs)
and gamma ray bursts (GRBs) ... but no one knows : that is the Auger goal!

• AGNs are super-massive black holes emitting jets of relativistic particles along the
accretion disk rotation axis.

• Catalogs of AGNs provide a starting point ...

• So far the most significant correlations are with the 12th Véron Cetty catalog

• Centarus-A ( z = 0.0018), shown above, is one of the nearby AGNs
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Distribution of the 15 events above 56EeV

• Plot of nearby (Veron
catalog) AGNs (*),
each within a 3.1◦

colored disk reflecting
Auger acceptance,
and CRs that
correlate (filled
circles) and that do
not correlate (open
circles).

• Miraculously, 12 of 15
CRs correlate ... es-

pecially so as the Véron
catalog has a signifi-
cant bias for galactic
latitudes |b|<

∼
15◦
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So use a (1%) Running Prescription on new data

• Depending on how you define pass, the Running Prescription
passed in May (6/8) or in July (8/11) of 2007; the plot in
Science includes events through Aug 31, 2007.

• At a minimum, the Véron catalog: AGN maximum redshift and correlation
angle, defines a limited area (effectively 21%) of the sky. Thus the Véron
catalog AGN:CR correlation signal is evidence for a non-isotropic flux of
CRs that is enhanced near known extra-galactic objects.
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Alternate Running Prescription with Limited Error

• Brian Connolly (Segev BenZvi and Stefan Westerhoff) provided an alternative
procedure ... that is of general interest! A generic version is now available as
arXiv:0711.3937

• Philosophy: All relevant information needed to infer parameters from an experiment is contained

in the observed data. This is not true of the Auger Running prescription.

• Motivation: Recall that the motivation for a running (VS fixed length) prescription is
to be able to be as responsive as possible to data as they are collected!

• History: The technique comes from an “assembly line” defect analysis studied by
Alexander Wald (1947). The relevant issue was how long to run a factory to ensure
say < 40% of the cars were defective ... before shutting it down to re-tool the
assembly lines. This technique was important enough to be classified by the U.S.
government during W.W.II!
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Connolly/Wald Running Prescription (I)

Definitions, and values, for the case of our AGN:CR correlations:
• Background (random AGN:CR coincidence) probability: p0 = 0.21

• Null hypothesis, H0: corresponds to no signal, with correlation probability p0

• Model Signal probability: p1 (to be tested against p0); this may be one value or a
range of values: e.g. p1 > p0. For the (previous) Running prescription values:
p1 = 0.57 and p1 = 0.80 were chosen.

• Model hypothesis, H1: corresponds to a (model) signal, with correlation probability
p1

• The observed (signal) correlation probability in the new data: p

• Errors:
◦ H0 is true, but rejected by the test (Type-I error)
◦ H0 is false, but accepted by the test (Type-II error)
◦ Limit probability of Type-I error: α = 0.01

◦ Limit probability of Type-II error: β = 0.05

University of Utah, May 14, 2010 – p.49/53



Connolly/Wald Running Prescription (II)

Sequential test of hypothesis H0 VS H1:
• Determine two positive constants: A and B (based on α and β ... see below)

• After each new event calculate the probability ratio:

R =
P (Data|H1)

P (Data|H0)

• If R > A the running prescription is terminated with the rejection of H0.

• If R < B the running prescription is terminated with the acceptance of H0.

• If B < R < A the running prescription continues ... i.e. the result is inconclusive.

• Wald (1943) showed that: A ≥ 1−β
α

and B ≤ β
(1−α)

• Furthermore Wald also showed that using “=” in the definitions for A and B

provides protection against wrong decisions ... i.e. α and/or β are not increased
over the assigned values as long as they are <

∼
0.05 ... consistent with our choices

University of Utah, May 14, 2010 – p.50/53



Connolly/Wald Running Prescription (III)

Sequential test of Auger AGN:CR correlations:
• After each new event calculate the probability ratio:

R =
pk
1 · (1 − p1)n−k

pk
0 · (1 − p0)n−k

where k events correlate out of n total events and p0 = 0.21. But what value should

we use for p1?

• One approach is to choose a model p1 with p1 > p0 but less than, but possibly
near, the correlation signal in the data, p; see arXiv:0711.3937.

• The new approach, proposed by Connolly, is to integrate over all possible values of
p1; then the ratio test becomes (for example):

R′ =

R 1
0 pk · (1 − p)n−kdp

pk
0 · (1 − p0)n−k

=
B(k + 1, n − k + 1)

pk
0 · (1 − p0)n−k

where B( ) is the beta function. This has now been validated in arXiv:0711.3937.
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Connolly/Wald Running Prescription (IV)

• With our choice of α = 0.01 and β = 0.05 then A = 95 and B = 0.0505

• For a data sample (n) of 11 events, how sensitive are R′, and/or R, to the
observed number of correlations (k)?

• Plot: shows R′ and R (for three values of p1: 0.4, 0.57, 0.8) VS k
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Connolly/Wald Running Prescription (V)

• With our choice of α = 0.01 and β = 0.05 then A = 95 and B = 0.0505

• If R′ < 0.0505 the null hypothesis is accepted ... i.e. this is evidence against a signal

• If 0.0505 < R′ < 95 ... keep going i.e. we simply do not know!

• If R′ > 95 the null hypothesis is rejected ... i.e. this is evidence for a signal ...

This occurred when k = 8 correlations were observed in n = 11 total events
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