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Abstract/Background:

In November 2007 the Pierre Auger experiment (Auger) in Mendoza province Argentina
published evidence for Correlation of the Highest-Energy Cosmic Rays with Nearby
Extragalactic Objects potentially opening the door for cosmic ray astronomy. In February
2010 the Auger experiment published evidence for a significant fraction of the highest
energy cosmic rays not being protons. As cosmic rays are bent by magnetic fields in the
universe, the increased angular deflection of non-proton cosmic rays meant that there
was(is) a mild to significant tension between these two results.

Since then the Telescope Array experiment (TA) in Millard County Utah has results in the
same energy range as the Auger experiment. Furthermore the air shower simulation
programs, used to interpret the composition of the cosmic rays, have been significantly
revised to reflect the latest collider data.

Thus it is timely to ask: what are the highest energy cosmic rays telling us?
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Why are we still searching for the origin of
cosmic rays ~ 95 years after the discovery?

Magnetic Fields are the problem:

While gamma-rays and neutrinos are ‘blind’ to magnetic fields,
cosmic rays are charged particles, the nuclei of atoms.

Like the drunken man’s walk!

BUT the highest energy particles are expected to be almost
undeflected by the fields — cosmic ray astronomy.

But they are very rare:

~ 1 per square kilometre per century
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Post 1966

* A primary interest became establishing the existence, or
otherwise, of the Greisen-Zatsepin-Kuzmin (GZK)
steepening

Ppty,;x>A"—=p+a’ or n+n’

If particles are observed > 5 x 10!° eV, then they must be
local (GZK cut-off) within ~ 100 Mpc, depending on energy

So ANISOTROPIES expected from nearby sources
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Possible CR source populations
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® Above: Ptuskin, Zirakashvili and Seo (2010)
propose a cocktail of supernova types and
environments as candidate population 1,2
sources. (R-scale assumes only protons.)

Primary Energy, E [GeV]

® rigidity R = (pc)/(Zmpnc?) is natural for mixed
cosmic ray composition
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Hybrid measurement of CR extensive air showers ‘*‘
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ICRC 2013 comparison of Auger and TA spectra
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® Auger and TA spectra are presumably Gaisser et al population 3.
® ~ 10% energy normalization brings spectra into cooincidence

@ Curious disagreement at the highest energies! |s this some systematic (energy)
error or possibly new physics?
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Spectrum analysis for ankle and GZK cutoff A0\
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GZK model predictions typically assume protons with a generation source flux:
®(Ey) x E; 7 (1+ z)™ with v, m adjustable parameters and z the source redshift.

The GzK cutoff, Ey /9, IS rather insensitive to the source parameters: Aloisio,
Berezinsky and Gazizov (2012) predict logio(F; /2/eV) = 19.72

® Auger and TA spectra give: log10(Eq/2/€V) = 19.63 £ 0.02 and 19.74 + 0.08

respectively. Curiously only TA data favors naive GZK with proton primaries ... |
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Auger spectrum comparison to GZK models ‘l-‘

| Auger2013 preliminary
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® Comparison of GZK model predictions for proton only or iron only primaries with
generation source flux: ®(E,) Eg_ﬁ(l + z)™, with £y < E.yt0¢f, to the (ICRC
2013 combined) Auger data (e).

® The iron model can only reproduce the data above log1o(E/eV) ~ 18.8.

® Depending on the redshift evolution enhancement, the proton model can

reproduce the data over essentially all the population 3 energy range. |
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Pair-Production Dip Model
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is the ratio of proton spectrum J (E),
calculated with all energy losses on CMIBR

pFy el gl
p+y — rPOKE0) +x
and ‘unmodified’ spectrum J3"™(E)

with only adiabatic energy loss included
(due to red-shift).

V. Berezinsky, A.G., S. Grigorieva
Phys. Rev. D74 (2006) 043005

If UHECRs are protons (HiRes): all features are well explained.

Transition from galactic Iron == to extragalactic protons occurs at
E=(3+5)x10*" eV.



Spectrum analysis for mixed composition LB
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® Population 1 and 2 have mixed composition: p, He, ... Fe; why not population 3?

® (Right plot:) Allard, Parizot, Khan, Goriely and Olinto (2008) found that only
almost pure protons have a distinct ankle. Left plot confirms that only almost pure
protons model the flux over essentially all of the population 3 energy range.

® Does the clear ankle, in Auger/TA data, favor mostly (> 75%) proton composition?
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Proton composition favors CR:source correlations

The University of New Mexico
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(Left:) Fraction of Auger CRs correlated with VCV catalog AGNs. While the initial
magnitude of the CR:AGN correlation was probably over-estimated, 5 years later is

Auger observing a weak but stable signal?

(Right:) Is the TA experiment also observing a weak but non-zero correlation?

Is this too uncertain to tell us about AGNSs as the sources and the possible proton

composition of the highest energy CRs?
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Experimental sensitivity to CR composition
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Extensive air showers differ for iron(Fe), proton(p) and photon(+) primaries.

(Left:) The position of shower maximum, X, 4z, IS measured by fluorescence
telescopes.

(Right:) The radial densities of muons(x) and electro-magnetic(e™*) particles from
the shower core are measured by the Auger surface detectors.
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Shower Monte Carlo (MC) predictions
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Shower MCs include known particle physics plus phenomenological models to
extend to Auger/TA CR energies but not “1o” possibilities ...

(Left:) Predictions for X, 4, for p and Fe primaries from MC version “n”.
(Right:) Predictions from MC version “n+1” tuned to the latest collider data.
MC differences may under (or over) estimate systematic uncertainties.

Experimental data are “noisy” but MC predictions disfavor pure proton composition!
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® (Left:)) Comparison of MC predictions to Auger data suggest a mostly proton
composition at 2 x 10'8eV transition to mixed composition by 4 x 1019eV.

® (Right:) A similar study by TA (when compared to version “n” MC predictions) is
more compatible with a mostly proton composition ...

® Do these results rule out, or confirm, >75% proton composition?

® If the primaries are >75% proton composition, what are the data telling us about
MC extrapolations of LHC physics to Auger/TA energies?
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ICRC2013 Auger X,,,, BRM S data
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Auger also measures the width of the
Xmagz distribution, X4 RMS,
which provides independent
information on CR composition ...

(Left:) Data to MC comparisons (also)
suggest a mostly light (proton)
composition at 2 x 1018eV transition
to mixed or heavy (iron) composition
by 4 x 1019eV.

What are shown are statistical
uncertainties ...

While these measurements are
straightforward in principle, in practice
they are challenging without incurring
significant systematic errors.

4 Corners APS Meeting, U. of Denver, October 18-19, 2013 — p.13/17



Auger breaks the silence on muon data
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® (Left:) Ratio of Auger surface detector (SD) muon signal to MC predictions, R,,,
VS ratio of SD EM signal to MC predictions, Rg, in Auger hybrid events.

® (Right:) Auger SD muon signal VS CR energy in large zenith angle SD events
® Unlike X4, data, the muon data are INconsistent with all MC predictions ...
¢ And the muon signal INcreases with energy contrary to all MC predictions ...

¢ A > 75% proton composition would only INcrease the DISagreement!
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Does the muon excess require new physics? LB

® Left: HiRes-MIA, T.Abu-Zayyad et al (1999),
measurement of muon density compared to
(old) shower MC models

® The CR energy range of 0.1 EeV to 1 EeV is
believed to be a transition region from heavy
(significant iron) to light (significant proton)
composition ...
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® Newer shower MCs predict ~ 15% increased
muon flux; nevertheless HiRes-MIA data show

01 AaA ] marginal agreement with MC predictions.
v = QGSJet Tron ¢ HiRes-MIA + Auger muon data are consistent
, B/q]/ ~# QGSlJet Proton | with an increase in the “observed to predicted”
e R P R e muon signal with increasing energy.
0.1 1 e
E (10%ev) ® Is there flexibility in the MCs to accommodate

the Hires-Mia/Auger muon results?

® Arguably both X,,,., and muon data show en-
ergy dependent “observed to predicted” differ-

ences. Is this a clue or a red herring? |
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Why are we still studying Cosmic Rays? ‘l*-.

® Modern CR experiments have progressed a
long way from the (Left photos) pioneering
experiments ...

¢ Do we now know the source of the highest
energy CRs? No ... but the CR:AGN
correlations continue to be suggestive or
maybe just seductive!

¢ Do we now know the composition of the
highest energy CRs? No ... but (arguably)
GZK predictions for the CR spectrum favor a
high percentage (> 75%) protons.

¢ Are CR showers in the atmosphere consistent
with MC expectations? No ... perhaps itis
time (cautiously) to consider new physics!

® So why are we still studying cosmic rays?
Maybe even refined tuning of shower MCs is
insufficient, maybe most of the flux is not pro-

tons and maybe the AGNs are not the sources
|
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THE WORLD’S LARGEST
COSMIC RAY OBSERVATORY

OBSERVATORY

Collaboration : ~ 500 members & 19 countries
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- Bolivia*
Brazil -
Romania*
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USA >
Pierre Auger
Observatory

B Full members
] Associate members

Antoine Letessier Selvon (CNRS/UPMC) 2 Auger highlights ICRC 2013 Rio de Janeiro



STATUS & PERFORMANCE

The world’s largest cosmic ray observatory

Loma Amarilla

Los Leone

Antoine Letessier Selvon (CNRS/UPMCQC)

In operation since 2004

PIERRE
AUGER

OBSERVATORY

FD Loma Amarilla:
Lidar, IR Camera

/
FD Coihueco:
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L
/ﬁ(treme Laser Facility
[ J
Central Laser. Facility

FD Los Morados:
Lidar, IR Camera

Malarguex

FD Los Leones: 10 km

Lidar, IR Camera

Auger highlights ICRC 2013 Rio de Janeiro



TA HYBRID DETECTOR
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FIG. 2: A schematic view of the Cherenkov water tanks, with the
components indicated in the figure.
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Hybrid Events at the Auger Observatory
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Key Facts

* Fluorescence Detector (FD) sets energy scale
* Telescopes measure longitudinal profile & energy deposit
* Sensitive primarily to EM (= 90% of energy)

* Surface Detector Array (SD) measures ground particles
» Water-Cherenkov detectors
* Sensitive to both EM and muons




[
Can models match both FD and SD?

* Find simulations which match measured FD profile, for each event
 Compare the ground signals between the simulations and data

e Rescale muon content so that simulated ground showers best-match
observed ones.

FD: longitudinal profile SD: lateral distribution
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(b) event 4742735, LM, E = (3.5 £ 0.2) x 10'? eV
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